

Welcome to pyhs

pyhs is a pure Python client (with optional C speedups) for HandlerSocket [https://github.com/ahiguti/HandlerSocket-Plugin-for-MySQL]
plugin to MySQL database. In short, it provides access to the data omitting
the SQL engine in a NoSQL-like interface. It allows all simple operations
(get, insert, update, delete) over indexed data to perform considerably faster
than by usual means.

See this [http://yoshinorimatsunobu.blogspot.com/2010/10/using-mysql-as-nosql-story-for.html]
article for more details about HandlerSocket.

This client supports both read and write operations but no batching at the moment.

Go to Installation and Usage sections for quick start. There’s also a
reference for all public interfaces.

Project is open-source and always available on the bitbucket:
http://bitbucket.org/excieve/pyhs/

Contents:

	Installation
	HandlerSocket plugin

	The Client

	Usage
	Overview

	Usage examples

	API
	sockets

	manager

	exceptions

Installation

HandlerSocket plugin

First, you’ll have to get this working. At the moment of writing the only way
to do this, was getting the source code, compiling it and loading into the
MySQL instance. Keep the HandlerSocket up to date as the client gets updated
from time to time as new features or changes appear in the plugin.

See also

	Installation guide [https://github.com/ahiguti/HandlerSocket-Plugin-for-MySQL/blob/master/docs-en/installation.en.txt]

	HandlerSocket installation guide at the official repository.

The Client

At the moment you can install pyhs by either using pip [http://pip.openplans.org/],
easy_install, downloading from PyPI or getting source directly from bitbucket.

Pip way

This is very simple, just run:

pip install python-handler-socket

Or this to get the latest (not yet released on PyPI):

pip install hg+http://bitbucket.org/excieve/pyhs#egg=python-handler-socket

This command will install the package into your site-packages or dist-packages.

Source

Clone the source from the repository and install it:

hg clone http://bitbucket.org/excieve/pyhs
cd pyhs
python setup.py install

By default additional C speedups are also built and installed (if possible).
However, if they are not needed, please use --without-speedups option.

Testing installation

Check your installation by running this in Python interpreter:

from pyhs import __version__
print __version__

This should show currently installed version of pyhs.
You’re all set now.

Usage

Overview

Once the package is correctly installed and HandlerSocket plugin is loaded in
your MySQL instance, you’re ready to do some code.

The client consists of two parts: high level and low level.

In most cases you’ll only need the high level part which is handled by
manager.Manager class. It saves developer from index id allocation
and reader, writer server pools management - just provides a simple interface
for all supported operations.

One might want to use the low level interface in case more control over mentioned
things is needed. This part is handled by sockets.ReadSocket and
sockets.WriteSocket for read and write server pools/operations correspondingly.
They both subclass sockets.HandlerSocket which defines the pool and
common operations like opening an index. There’s also the sockets.Connection
which controls low-level socket operations and is managed by the pool.

Usage examples

A few simple snippets of both low and high level usage to get started.

High level

This one initialises HandlerSocket connection and inserts a row in a table:

from pyhs import Manager

This will initialise both reader and writer connections to the default hosts
hs = Manager()

try:
 # Insert a row into 'cars.trucks' table using default (primary) index
 hs.insert('cars', 'trucks', [('id', '1'), ('company', 'Scania'), ('model', 'G400')])
except OperationalError, e:
 print 'Could not insert because of "%s" error' % str(e)
except ConnectionError, e:
 print 'Unable to perform operation due to a connection error. Original error: "%s"' % str(e)

Note

Look how the data is passed - it is a list of field-value pairs. Make sure that
all values are strings.

Now let’s get that data back:

from pyhs import Manager

hs = Manager()

try:
 data = hs.get('cars', 'trucks', ['id', 'company', 'model'], '1')
 print dict(data)
except OperationalError, e:
 print 'Could not get because of "%s" error' % str(e)
except ConnectionError, e:
 print 'Unable to perform operation due to a connection error. Original error: "%s"' % str(e)

Note

get() is a wrapper over find().
It only fetches one row searched for by a single comparison value and uses only
primary index for this. For more complex operations please use find.
Make sure that the first field in the fields list is the one that is searched
by and that the list is ordered in the same way fields are present in the index.

find and get return list of field-value pairs as result.

A more complex find request with composite index and custom servers:

from pyhs import Manager

When several hosts are available, client code will try to use both of them
to balance the load and will retry requests in case of failure on one of them.
read_servers = [('inet', '1.1.1.1', 9998), ('inet', '2.2.2.2', 9998)]
write_servers = [[('inet', '1.1.1.1', 9999), ('inet', '2.2.2.2', 9999)]]
hs = Manager(read_servers, write_servers)

try:
 # This will fetch maximum of 10 rows with 'id' >= 1 and company >= 'Scania'.
 # Unfortunately, HandlerSocket doesn't support multiple condition operations
 # on a single request.
 data = hs.find('cars', 'trucks', '>=', ['id', 'company', 'model'], ['1', 'Scania'], 'custom_index_name', 10)
 # Return value is a list of rows, each of them is a list of (field, value) tuples.
 print [dict(row) for row in data]
except OperationalError, e:
 print 'Could not find because of "%s" error' % str(e)
except ConnectionError, e:
 print 'Unable to perform operation due to a connection error. Original error: "%s"' % str(e)

Note

Fields and condition values must be ordered in the same way as present in
the index (in case it’s composite). All fields that aren’t in the index
may be ordered randomly.

Another important thing is the limit parameter. In case multiple results
are expected to be returned by the database, this must be set explicitly.
HandlerSocket will not return all of them by default.

A sample of increment operation with original value returned as result. Similar one exists for decrement.:

from pyhs import Manager

hs = Manager()

try:
 # "incr" increments a numeric value by defined step parameter. By default it is '1'.
 original = hs.incr('cars', 'trucks', '=', ['id'], ['1'], return_original=True)
 print original
 # This will return ['1'] but the new value would be ['2']
except OperationalError, e:
 print 'Could not find because of "%s" error' % str(e)
except ConnectionError, e:
 print 'Unable to perform operation due to a connection error. Original error: "%s"' % str(e)

Low level

A small overview of how to operate HandlerSocket.
An opened index is required to perform any operation. To do this, use
sockets.HandlerSocket.get_index_id() which will open the index and
return its id.

Note

Id’s are cached internally by the client and it will return existing id
(without opening a new index) in case same db, table and list of
columns is passed.

This id will must used in all further operations that operate over the same
index and columns.
There are two classes that must be used to perform actual operations:
sockets.ReadSocket for reads and socket.WriteSocket for writes.

An example:

from pyhs.sockets import ReadSocket

hs = ReadSocket([('inet', '127.0.0.1', 9998)])

try:
 index_id = hs.get_index_id('cars', 'trucks', ['id', 'company', 'model'])
 data = hs.find(index_id, '=', ['1'])
 # Data will contain a list of results. Each result is a list of row's values.
 print data
except OperationalError, e:
 print 'Could not find because of "%s" error' % str(e)
except ConnectionError, e:
 print 'Unable to perform operation due to a connection error. Original error: "%s"' % str(e)

Exception handling

There are three exceptions that client may raise:

	exceptions.ConnectionError

	Something bad happened to HandlerSocket connection. Data could not be sent
or received. Actual reason will be present in the first exception instance’s
argument. Note that the client may retry operations in case several hosts are defined.

	exceptions.OperationalError

	Raised when HandlerSocket returned an error. Error code is present in the
exception instance.

	exceptions.IndexedConnectionError

	ConnectionError happened when performing an operation with already
opened index. High level client uses this to retry whole operation in case
something correctable failed. Developer might want to use it if low level
client is used.

See also

	API reference

	Description of all public interfaces provided by both parts of the client

API

This is the pyhs reference documentation, autogenerated from the source
code.

	sockets

	manager

	exceptions

sockets

	
class pyhs.sockets.Connection(protocol, host, port=None, timeout=None)

	Single HandlerSocket connection.

Maintains a streamed socket connection and defines methods to send and
read data from it.
In case of failure retry_time will be set to the exact time after
which the connection may be retried to deal with temporary connection issues.

	Parameters:	
	protocol (string) – socket protocol (‘unix’ and ‘inet’ are supported).

	host (string) – server host for ‘inet’ protocol or socket file path for ‘unix’.

	port (integer or None) – server port for ‘inet’ protocol connection.

	timeout (integer or None) – timeout value for socket, default is defined in
DEFAULT_TIMEOUT.

	
connect()

	Establishes connection with a new socket. If some socket is
associated with the instance - no new socket will be created.

	
disconnect()

	Closes a socket and disassociates it from the connection instance.

Note

It ignores any socket exceptions that might happen in process.

	
is_ready()

	Checks if connection instance is ready to be used.

	Return type:	bool

	
readline()

	Reads one line from the socket stream and returns it.
Lines are expected to be delimited with LF.
Throws ConnectionError in case of failure.

	Return type:	string

Note

Currently Connection class supports only one line per
request/response. All data in the stream after first LF will be ignored.

	
send(data)

	Sends all given data into the socket stream.
Throws ConnectionError in case of failure.

	Parameters:	data (string) – data to send

	
set_debug_mode(mode)

	Changes debugging mode of the connection.
If enabled, some debugging info will be printed to stdout.

	Parameters:	mode (bool) – mode value

	
class pyhs.sockets.HandlerSocket(servers, debug=False)

	Pool of HandlerSocket connections.

Manages connections and defines common HandlerSocket operations.
Uses internal index id cache.
Subclasses threading.local to put connection pool and indexes data
in thread-local storage as they’re not safe to share between threads.

Warning

Shouldn’t be used directly in most cases.
Use ReadSocket for read operations and WriteSocket for
writes.

Pool constructor initializes connections for all given HandlerSocket servers.

	Parameters:	
	servers (iterable) – a list of lists that define server data,
format: (protocol, host, port, timeout).
See Connection for details.

	debug (bool) – enable or disable debug mode, default is False.

	
get_index_id(db, table, fields, index_name=None)

	Returns index id for given index data. This id must be used in all
operations that use given data.

Uses internal index cache that keys index ids on a combination of:
db:table:index_name:fields.
In case no index was found in the cache, a new index will be opened.

Note

fields is position-dependent, so change of fields order will open
a new index with another index id.

	Parameters:	
	db (string) – database name.

	table (string) – table name.

	fields (iterable) – list of table’s fields that would be used in further
operations. See _open_index() for more info on fields order.

	index_name (string or None) – name of the index, default is PRIMARY.

	Return type:	integer or None

	
purge()

	Closes all connections, cleans caches, zeroes index id counter.

	
purge_index(index_id)

	Clear single index connection and cache.

	Parameters:	index_id (integer) – id of the index to purge.

	
purge_indexes()

	Closes all indexed connections, cleans caches, zeroes index id counter.

	
class pyhs.sockets.ReadSocket(servers, debug=False)

	HandlerSocket client for read operations.

Pool constructor initializes connections for all given HandlerSocket servers.

	Parameters:	
	servers (iterable) – a list of lists that define server data,
format: (protocol, host, port, timeout).
See Connection for details.

	debug (bool) – enable or disable debug mode, default is False.

	
find(index_id, operation, columns, limit=0, offset=0)

	Finds row(s) via opened index.

Raises ValueError if given data doesn’t validate.

	Parameters:	
	index_id (integer) – id of opened index.

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in FIND_OPERATIONS.
Only one operation is allowed per call.

	columns (iterable) – list of column values for comparison operation.
List must be ordered in the same way as columns are defined
in opened index.

	limit (integer) – optional limit of results to return. Default is
one row. In case multiple results are expected, limit must be
set explicitly, HS wont return all found rows by default.

	offset (integer) – optional offset of rows to search for.

	Return type:	list

	
class pyhs.sockets.WriteSocket(servers, debug=False)

	HandlerSocket client for write operations.

Pool constructor initializes connections for all given HandlerSocket servers.

	Parameters:	
	servers (iterable) – a list of lists that define server data,
format: (protocol, host, port, timeout).
See Connection for details.

	debug (bool) – enable or disable debug mode, default is False.

	
find_modify(index_id, operation, columns, modify_operation, modify_columns=[], limit=0, offset=0)

	Updates/deletes row(s) using opened index.

Returns number of modified rows or a list of original values in case
modify_operation ends with ?.

Raises ValueError if given data doesn’t validate.

	Parameters:	
	index_id (integer) – id of opened index.

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in FIND_OPERATIONS.
Only one operation is allowed per call.

	columns (iterable) – list of column values for comparison operation.
List must be ordered in the same way as columns are defined in
opened index.

	modify_operation (string) – modification operation (update or delete).
Currently allowed operations are defined in MODIFY_OPERATIONS.

	modify_columns (iterable) – list of column values for update operation.
List must be ordered in the same way as columns are defined in
opened index. Only usable for update operation,

	limit (integer) – optional limit of results to change. Default is
one row. In case multiple rows are expected to be changed, limit
must be set explicitly, HS wont change all found rows by default.

	offset (integer) – optional offset of rows to search for.

	Return type:	list

	
insert(index_id, columns)

	Inserts single row using opened index.

Raises ValueError if given data doesn’t validate.

	Parameters:	
	index_id (integer) – id of opened index.

	columns (list) – list of column values for insertion. List must be
ordered in the same way as columns are defined in opened index.

	Return type:	bool

manager

	
class pyhs.manager.Manager(read_servers=None, write_servers=None, debug=False)

	High-level client for HandlerSocket.

This should be used in most cases except ones that you need fine-grained
control over index management, low-level operations, etc.
For such cases ReadSocket and WriteSocket
can be used.

Constructor initializes both read and write sockets.

	Parameters:	
	read_servers (list of tuples or None) – list of tuples that define HandlerSocket read
instances. See format in HandlerSocket constructor.

	write_servers (list of tuples or None) – list of tuples that define HandlerSocket write
instances. Format is the same as in read_servers.

	debug (bool) – enable debug mode by passing True.

	
find(db, table, operation, fields, values, index_name=None, limit=0, offset=0)

	Finds rows that meet values with comparison operation
in given db and table.

Returns a list of lists of pairs. First item in pair is field name,
second is its value.
For example, if two rows with two columns each are returned:

[[('field', 'first_row_value'), ('otherfield', 'first_row_othervalue')],
 [('field', 'second_row_value'), ('otherfield', 'second_row_othervalue')]]

	Parameters:	
	db (string) – database name

	table (string) – table name

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in
FIND_OPERATIONS. Only one operation
is allowed per call.

	fields (list) – list of table’s fields to get, ordered by inclusion
into the index.

	values (list) – values to compare to, ordered the same way as items
in fields.

	index_name (string or None) – name of the index to open, default is PRIMARY.

	limit (integer) – optional limit of results. Default is one row.
In case multiple rows are expected to be returned, limit must be
set explicitly, HS wont get all found rows by default.

	offset (integer) – optional offset of rows to search for.

	Return type:	list of lists of tuples

	
insert(db, table, fields, index_name=None)

	Inserts a single row into given table.

	Parameters:	
	db (string) – database name.

	table (string) – table name.

	fields (list of lists) – list of (column, value) pairs to insert into the table.

	index_name (string or None) – name of the index to open, default is PRIMARY.

	Return type:	bool

	
update(db, table, operation, fields, values, update_values, index_name=None, limit=0, offset=0, return_original=False)

	Update row(s) that meet conditions defined by operation, fields
values in a given table.

	Parameters:	
	db (string) – database name

	table (string) – table name

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in
FIND_OPERATIONS. Only one operation
is allowed per call.

	fields (list) – list of table’s fields to use, ordered by inclusion
into the index.

	values (list) – values to compare to, ordered the same way as items
in fields.

	update_values (list) – values to update, ordered the same way as items
in fields.

	index_name (string or None) – name of the index to open, default is PRIMARY.

	limit (integer) – optional limit of rows. Default is one row.
In case multiple rows are expected to be updated, limit must be
set explicitly, HS wont update all found rows by default.

	offset (integer) – optional offset of rows to search for.

	return_original (bool) – if set to True, method will return a
list of original values in affected rows. Otherwise - number of
affected rows (this is default behaviour).

	Return type:	int or list

	
incr(db, table, operation, fields, values, step=['1'], index_name=None, limit=0, offset=0, return_original=False)

	Increments row(s) that meet conditions defined by operation, fields
values in a given table.

	Parameters:	
	db (string) – database name

	table (string) – table name

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in
FIND_OPERATIONS. Only one operation
is allowed per call.

	fields (list) – list of table’s fields to use, ordered by inclusion
into the index.

	values (list) – values to compare to, ordered the same way as items
in fields.

	step (list) – list of increment steps, ordered the same way as items
in fields.

	index_name (string or None) – name of the index to open, default is PRIMARY.

	limit (integer) – optional limit of rows. Default is one row.
In case multiple rows are expected to be updated, limit must be
set explicitly, HS wont update all found rows by default.

	offset (integer) – optional offset of rows to search for.

	return_original (bool) – if set to True, method will return a
list of original values in affected rows. Otherwise - number of
affected rows (this is default behaviour).

	Return type:	int or list

	
decr(db, table, operation, fields, values, step=['1'], index_name=None, limit=0, offset=0, return_original=False)

	Decrements row(s) that meet conditions defined by operation, fields
values in a given table.

	Parameters:	
	db (string) – database name

	table (string) – table name

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in
FIND_OPERATIONS. Only one operation
is allowed per call.

	fields (list) – list of table’s fields to use, ordered by inclusion
into the index.

	values (list) – values to compare to, ordered the same way as items
in fields.

	step (list) – list of decrement steps, ordered the same way as items
in fields.

	index_name (string or None) – name of the index to open, default is PRIMARY.

	limit (integer) – optional limit of rows. Default is one row.
In case multiple rows are expected to be updated, limit must be
set explicitly, HS wont update all found rows by default.

	offset (integer) – optional offset of rows to search for.

	return_original (bool) – if set to True, method will return a
list of original values in affected rows. Otherwise - number of
affected rows (this is default behaviour).

	Return type:	int or list

	
delete(db, table, operation, fields, values, index_name=None, limit=0, offset=0, return_original=False)

	Delete row(s) that meet conditions defined by operation, fields
values in a given table.

	Parameters:	
	db (string) – database name

	table (string) – table name

	operation (string) – logical comparison operation to use over columns.
Currently allowed operations are defined in
FIND_OPERATIONS. Only one operation
is allowed per call.

	fields (list) – list of table’s fields to use, ordered by inclusion
into the index.

	values (list) – values to compare to, ordered the same way as items
in fields.

	index_name (string or None) – name of the index to open, default is PRIMARY.

	limit (integer) – optional limit of rows. Default is one row.
In case multiple rows are expected to be deleted, limit must be
set explicitly, HS wont delete all found rows by default.

	offset (integer) – optional offset of rows to search for.

	return_original (bool) – if set to True, method will return a
list of original values in affected rows. Otherwise - number of
affected rows (this is default behaviour).

	Return type:	int or list

	
get(db, table, fields, value)

	A wrapper over find() that gets a single row with
a single field look up.

Returns a list of pairs. First item in pair is field name, second is
its value.

If multiple result rows, different comparison operation or
composite indexes are needed please use find() instead.

	Parameters:	
	db (string) – database name.

	table (string) – table name.

	fields (list) – list of table’s fields to get, ordered by inclusion
into the index. First item must always be the look up field.

	value (string) – a look up value.

	Return type:	list of tuples

	
purge()

	Purges all read and write connections.
All requests after that operation will open new connections, index
caches will be cleaned too.

exceptions

Exceptions used with HandlerSocket client.

	
exception pyhs.exceptions.ConnectionError

	Raised on socket connection problems.

	
exception pyhs.exceptions.OperationalError

	Raised on client operation errors.

	
exception pyhs.exceptions.RecoverableConnectionError

	Raised on socket connection errors that can be attempted to recover instantly.

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to pyhs

 		Installation

 		HandlerSocket plugin

 		The Client

 		Pip way

 		Source

 		Testing installation

 		Usage

 		Overview

 		Usage examples

 		High level

 		Low level

 		Exception handling

 		API

 		sockets

 		manager

 		exceptions

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

